博客
关于我
个人简历
阅读量:394 次
发布时间:2019-03-05

本文共 478 字,大约阅读时间需要 1 分钟。

关于如何在Python中实现高效的数据分析,数据清洗是核心步骤之一。通过对数据进行标准化和异常值处理,可以显著提升分析结果的准确性。在实际项目中,如何选择合适的数据清洗方法对最终效果至关重要。

首先,标准化是数据清洗中的重要环节。对于不同数据类型的数据,采用不同的标准化方法可以确保数据的一致性。例如,对于文本数据,可以使用TF-IDF转换,将文本转换为向量表示;对于数值数据,可以通过最小-最大标准化或Z-score标准化消除量纲差异。

其次,异常值的处理也是关键。数据中可能存在异常值,这些异常值可能对分析结果产生误导。常见的处理方法包括箱线图处理、孤立值剔除以及多次迭代检测等。通过对异常值进行合理剔除,可以使数据分布更加合理,分析结果更加可靠。

最后,数据清洗的效果需要通过可视化验证。通过绘制直方图、箱线图等图表,可以直观地观察数据分布情况,评估清洗效果。同时,可以结合业务背景,对清洗后的数据进行领域知识验证,确保清洗结果符合业务需求。

总的来说,数据清洗是数据分析的基础工作,需要结合具体业务需求选择合适的方法,并通过多方面验证确保数据质量。

转载地址:http://gctzz.baihongyu.com/

你可能感兴趣的文章
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NI笔试——大数加法
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
查看>>
No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
查看>>
No module named cv2
查看>>
No module named tensorboard.main在安装tensorboardX的时候遇到的问题
查看>>
No module named ‘MySQLdb‘错误解决No module named ‘MySQLdb‘错误解决
查看>>
No new migrations found. Your system is up-to-date.
查看>>
No qualifying bean of type XXX found for dependency XXX.
查看>>
No resource identifier found for attribute 'srcCompat' in package的解决办法
查看>>
No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
查看>>
NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
查看>>
Node JS: < 一> 初识Node JS
查看>>