博客
关于我
个人简历
阅读量:394 次
发布时间:2019-03-05

本文共 478 字,大约阅读时间需要 1 分钟。

关于如何在Python中实现高效的数据分析,数据清洗是核心步骤之一。通过对数据进行标准化和异常值处理,可以显著提升分析结果的准确性。在实际项目中,如何选择合适的数据清洗方法对最终效果至关重要。

首先,标准化是数据清洗中的重要环节。对于不同数据类型的数据,采用不同的标准化方法可以确保数据的一致性。例如,对于文本数据,可以使用TF-IDF转换,将文本转换为向量表示;对于数值数据,可以通过最小-最大标准化或Z-score标准化消除量纲差异。

其次,异常值的处理也是关键。数据中可能存在异常值,这些异常值可能对分析结果产生误导。常见的处理方法包括箱线图处理、孤立值剔除以及多次迭代检测等。通过对异常值进行合理剔除,可以使数据分布更加合理,分析结果更加可靠。

最后,数据清洗的效果需要通过可视化验证。通过绘制直方图、箱线图等图表,可以直观地观察数据分布情况,评估清洗效果。同时,可以结合业务背景,对清洗后的数据进行领域知识验证,确保清洗结果符合业务需求。

总的来说,数据清洗是数据分析的基础工作,需要结合具体业务需求选择合适的方法,并通过多方面验证确保数据质量。

转载地址:http://gctzz.baihongyu.com/

你可能感兴趣的文章
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO基于UDP协议的网络编程
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>